Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1233605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731928

RESUMO

It is widely acknowledged that conventional mining and extraction techniques have left many parts of the world with depleting coal reserves. A sustainable method for improving the recovery of natural gas from coalbeds involves enhancing the production of biogenic methane in coal mines. By taking a culture-independent approach, the diversity of the microbial community present in the formation water of an Indian reservoir was examined using 16S rRNA gene amplification in order to study the potential of microbial-enhanced coal bed methane (CBM) production from the deep thermogenic wells at a depth of 800-1200 m. Physicochemical characterization of formation water and coal samples was performed with the aim of understanding the in situ reservoir conditions that are most favorable for microbial CBM production. Microbial community analysis of formation water showed that bacteria were more abundant than archaea. Proteobacteria, Firmicutes, and Bacteroidetes were found as the most prevalent phyla in all the samples. These phyla play a crucial role in providing substrate for the process of methanogenesis by performing fermentative, hydrolytic, and syntrophic functions. Considerable variation in the abundance of microbial genera was observed amongst the selected CBM wells, potentially due to variable local geochemical conditions within the reservoir. The results of our study provide insights into the impact of geochemical factors on microbial distribution within the reservoir. Further, the study demonstrates lab-scale enhancement in methane production through nutrient amendment. It also focuses on understanding the microbial diversity of the Raniganj coalbed methane block using amplicon sequencing and further recognizing the potential of biogenic methane enhancement through microbial stimulation. The findings of the study will help as a reference for better strategization and implementation of on-site microbial stimulation for enhanced biogenic methane production in the future.

2.
Environ Pollut ; 282: 117003, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848911

RESUMO

Microbial communities are considered as vital members to reflect the health of a riverine system. Among them, pathogenic and fecal indicators imply health risks involved with potability of river water. The present study explores the diverse microbial communities, distribution pattern of potential pathogens, and fecal indicators between the geographically distinct Himalayan and Peninsular river systems of India. It also inquires into the environmental factors associated with community variance and distribution pattern of microbial indicators. The application of high-throughput amplicon sequencing approach unveiled significant demarcation (p < 0.004, Anosim R = 0.62) of samples suggesting unique microbial diversities in these two river sediments. Random forest analysis revealed Desulfobulbulus, PSB_M_3, and Opitutus in Himalayan, while DA101, Bacillus, and Streptomyces in the Peninsular as significant contributors to develop overall dissimilarity between the river systems. Permutational multivariate analysis of variance and co-occurrence network analysis were used to study the relationships between microbial taxa and environmental factors. Amongst the various studied environmental parameters, pH, K, Ca, Mg, Ba, and Al in the Himalayan and salinity, Na, temperature, and Th in the Peninsular significantly influenced shaping of distinct microbial communities. Furthermore, the potential pathogenic genera, including Flavobacterium, Clostridium, Arcobacter, Pseudomonas, and Bacillus were highly prevalent in both the river systems. Arcobacter, Clostridium, Acinetobacter, Bacteroides, and Caloramator were the prominent fecal indicators in these river systems. Our findings provide salient information about the crucial role and interplay between various environmental factors and anthropogenic influences in framing the microbiome of the distinct river systems in India. Moreover, assessing potential pathogenic and fecal indicators suggest the public health risk associated with untreated sewage discharge into these water sources. The detection of various F/S indicators and potentially pathogenic bacteria in Himalayan and Peninsular river systems emphasize the urgent need for future monitoring and management of major riverine systems in India.


Assuntos
Metagenômica , Rios , Monitoramento Ambiental , Fezes , Índia , Prevalência
3.
Genome Announc ; 6(11)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545300

RESUMO

We report here targeted deep-sequencing metagenomic data that reveal a high level of diversity in the microbiota residing in the sediment of the Periyar River in a reserve forest of the Western Ghats. Of the 4,674 operational taxonomic units discovered, the dominant phyla represented were Proteobacteria (33.12%), Actinobacteria (14.58%), Acidobacteria (12.81%), and Bacteroidetes (9.89%).

4.
Genome Announc ; 6(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301875

RESUMO

The Yamuna River is the backbone of domestic, irrigation, and industrial activities in Delhi, India, yet the complex dynamics of its microbes and their contribution to biogeochemical cycles in a polluted environment remain elusive. This is an introductory report describing the microbial community in the Yamuna River, using high-throughput metagenomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...